
Image reconstruction of a perfectly conduicting 
cylinder by the genetic algorithm 

C.-C. Chiu 
P.-T. Liu 

Indexing terms: Genetic algorithm, Image reconstruction, Inverse schttering 

Abstract: The paper presents a computational 
approach to reconstruct the shape of a perfectly 
conducting cylinder. Based on the boundary 
condition and the measured scattered field, a set 
of nonlinear integral equations is derived and the 
imaging problem is reformulated into an 
optimum one. By using the genetic algorithm, the 
shape of the object can be reconstructed. The 
genetic algorithm will always converge to a global 
extreme solution no matter what the initial 
estimate. Numerical results are given to 
demonstrate that, even when the initial guess is 
far away from the exact one, good reconstruction 
has been obtained. In such a case, the calculus- 
based method often becomes trapped in a local 
extreme. 

1 introduction 

Inverse scattering of conducting objects has been a sub- 
ject of considerable importance in various areas of 
technology. Two categories of approaches have gener- 
ally been developed. The first is an approximate 
approach which makes use of the Bojarski identity to 
reconstruct the shape of a perfectly conducting scat- 
terer [ 1-51. However, this method requires a physical- 
optics approximation. In contrast, the second approach 
is to solve the exact equations rigorously by numerical 
methods [6-131. The rigorous method needs no approx- 
imation in formulation, but the nonlinearity and illpos- 
edness are more serious than for the approximate 
method. As a result, many inverse problems are refor- 
mulated as optimisation problems. There are two main 
different forms of cost functional for such optimisa- 
tion. The first form of the cost functional is intuitively 
defined as the root-mean-square error between the cal- 
culated scattered field and the measured scattered field 
[6-91. A solution which satisfies the boundary condi- 
tion can be found by searching the minimum of the 
cost functional. The second form of the cost functional 
consists of two terms: one term is the same as the cost 
functional defined in the first form; the other is the 
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root-mean-square error in satisfying the boundary inte- 
gral equation [lo-131. Note that a priori information or 
regularisation terms can be ,added in the above two 
cost functionals to overcome illposedness. The two 
optimisation schemes are nurrierical solved by different 
iterative methods such as Newton-Kantorovitch 
method [6-81, Levenberg-Marquardt algorithm [ 10- 
121 and conjugate-gradient method [ 131. However, the 
above mentioned rigorous approaches almost apply the 
calculus-based method to find the extreme by setting 
the gradient of the objective function equal to zero at 
each iteration. This method often becomes trapped in a 
local extreme, when the initial guess is far from the 
exact one. 

The current literature identifies three main types of 
search method: calculus-based, enumerative, and ran- 
dom methods [14]. The genletic algorithm is a well 
known algorithm which uses random choice to search 
through a coding of a parameter space. This algorithm 
has achieved increasing popularity as researchers have 
recognised the shortcomings of calculus-based and enu- 
merative schemes. Theoretically, the genetic algorithm 
and enumerative method converge to the global 
extreme of the problem, while calculus-based method 
often becomes trapped in a local extreme. On the other 
hand, the enumerative scheme lacks efficiency com- 
pared with the other two methods. As a result, the 
genetic algorithm is the most robust scheme among the 
three methods. Unfortunately, few papers have applied 
the genetic algorithm to solve the inverse problem [15]. 

In this paper, we present a method based on the 
genetic algorithm to recover the shape of an impenetra- 
ble cylinder. 

2 Theoretical formulation1 

2.1 Direct problem 
Let us consider a perfectly conducting cylinder located 
in a free space and let ( E ~ ,  po) denote the permittivity 
and permeability of the free space, respectively. The 
metallic cylinder with cross-section described in polar 
co-ordinates in the xy plane by the equation p = F(0) is 
illuminated by an incident plane wave whose electric- 
field vector is parallel to the z axis (i.e. transverse mag- 
netic or TM polarisation). We assume that the time 
dependence of the field is harmonic with the factor 
exp(iwt). Let Ei denote the incident field with incident 
angle 9, as shown in Fig. 1. Then the incident field is 
given by 

Ei(r) = exp{-jk(zsin$ + ycos$}i, k2 = w 2 ~ o p ~  (1) 
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At an arbitrary point (x, y )  in Cartesian co-ordinates or 
( r ,  0) in polar co-ordinates outside the scatterer, the 
scattered field E, = E - E,, can be expressed by 

Es(z,y) = 
27r 

0 

with 

J ( 0 )  = - j”&(8)  + F ’ 2 ( e ) J S ( e )  

where H J 2 )  is the Hankel function of the second of 
order zero, and J,(0) is the induced surface current den- 
sity which is proportional to the normal derivative of 
electric field on the conductor surface. Note that the 
scattered field for large values of r in eqn. 2 can be 
expressed in asymptotic form as 

27r 

x / exp(jkF(8’) cos(8 - B’) }J(B’ )d(B’ )  

0 

where G,(6) is known as the scattered far-field pattern. 

Y 
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problem 
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Fig. 1 Geometry ofproblem in (x, y )  plane 

The boundary condition at the surface of the scat- 
terer states that the total tangential electric field must 
be zero and this yields an integral equation for J(0): 

27r 

where 

T ” ( 0 ,  0’) = { P ( 8 )  + F2(8’) - 2F(O)F(Q’) cos(8 - Q’)}1’2 

For the direct-scattering problem, the scattered field E,  
is calculated by assuming that the shape of the object is 
known. This can be achieved by first solving J in eqn. 3 
and calculating E, in eqn. 2. For numerical calculation 
of the direct problem, the contour is first divided into 
sufficient small segments so that the induced surface 
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current can be considered constant over each segment. 
Then the moment method [16] is used to solve eqns. 3 
and 2 with a pulse basis function for expanding and the 
Dirac delta function for testing. 

2.2 Genetic algorithm 
The genetic algorithm is a search algorithm based on 
the mechanics of natural selection and natural genetics. 
This algorithm has achieved increasing popularity as 
researchers have recognised the shortcoming of calcu- 
lus-based and enumerative schemes. They find the glo- 
bal maximum of an objective function (or fitness 
function) of the problem by random search. The natu- 
ral parameter set of the optimisation problem is first 
coded as a finite-length string. Then three operators ~ 

reproduction, crossover and mutation - are employed 
to search the optimisation of the problem through a 
coding of a parameter space. Reproduction is a process 
in which individual strings are copied according to 
their objective-function value. Intuitively, we can think 
of the object function as some measure of profit, utility 
or goodness that we want to maximise. Copying strings 
according to their fitness values means that strings with 
a higher value have a higher probability of contributing 
one or more offspring in the next generation. After 
reproduction, simple crossover may proceed in two 
steps. First, members of the newly reproduced strings 
in the mating pooling are mated at random. Secondly, 
each selected pair of strings undergoes crossing over 
and then produces two new strings. Each bit value of 
the two new strings is chosen randomly from that of 
the two selected strings on the same bit position. After 
crossover, mutation operation is applied. Mutation is 
the occasional (with small probability) random altera- 
tion of the bit value of a string. In the binary coding of 
the parameter, this simply means changing a 1 to 0 and 
vice versa. The above three operations have proved to 
be both computationally simple and effective in attack- 
ing a number of important optimisation problems. The 
flow chart for the genetic algorithm is shown in Fig. 2. 

>threshoid 
evaluation 
0 bj ec t ive 
function 

select strings 
to reproduce 
their offspring 

I 
apply 
crossover and 
m u  tat ion to 
create new . generation ‘ 

Fig.2 Flowchart of the genetic algorithm 
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2.3 Inverse problem 
We consider the following problem. Given the scattered 
field E, measured outside the scatterer, determine the 
shape F(0) of the object. For numerical calculation of 
the inverse problem, we choose the following expan- 
sions: 
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n = O  n=l 

where A ,  and A', are real numbers and N + 1 is the 
number of unknowns. Note that the discretisation 
number of J(0) for the inverse problem must be differ- 
ent from that for the direct problem. In our simulation, 
the discretisation number for the direct problem is 
twice that for the inverse problem. Since it is crucial 
that the synthetic data generated through a direct 
solver are not like those obtained by the inverse solver, 
in the inversion procedure, the genetic algorithm is 
used to maximise the objective function 

Mt 

S F =  { & I E y "  (Im ) Epa'(rnL) I L / I  E;"" ( rm)  12+a I F ' ( 0 )  12 
W L = 1  

( 5 )  
where Mt is the total number of measurement points. 
Eyl(r) and EJerJ'(r) are the calculated scattered field 
and the measured scattered field, respectively. Note 
that the regularisation term alF'(O)j2 has been added in 
eqn. 5,  where typical values of a range from 0.0001 to 
10. The optimal value of a depends mainly on the 
dimensions of the geometry. In applying the genetic 
algorithm, the maximum string length is chosen first; 
then the unknown coefficient of the shape function is 
coded as a population of strings. Here, physical con- 
straints are used to limit the extreme value of the coef- 
ficients of shape function. A random start using 
successive coin flips (head = 1, tail = 0) generates the 
initial population. The genetic algorithm starts with 
this population of strings and thereafter generates suc- 
cessive populations of strings by employing reproduc- 
tion, crossover and mutation operations. The 
generation process will be stopped when either SF 
changes by less than 1% SF is larger then lo5 in two 
successive generations. 

3 Numerical results 

By numerical simulation, we illustrate the performance 
of the proposed inversion algorithm and its sensitivity 
to random error in the scattered field. Let us consider a 
perfectly conducting cylinder in a free space and a 
plane wave of unit amplitude incident on the object, as 
shown in Fig. 1. The frequency of the incident wave is 
chosen to be 300MHz, i.e. the wavelength h is lm .  

In our calculation four examples are considered. To 
reconstruct the shape of the cylinder, the object is illu- 
minated by the four incident waves with incident angles 
$ = O", 90", 180" and 270°, and the measurement is 
taken on a circle of radius R' at equal spacing. In our 
case, R' is chosen to be 10m corresponding to the far- 
field measurement. Note that for each incident angle 
eight measurement points at equal spacing are used, 
and there are 32 measurement points in all in each sim- 
ulation. The number of unknowns is set to be nine (i.e. 
N + 1 = 9). Population size is chosen as 300. The cross- 
over probability and mutation probability are set to be 
0.8 and 0.04, respectively. The value of a is 0.001. The 
length of coding is set to be eight bits and the search 
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range for the unknown coefficient of the shape func- 
tion is chosen from 0 to 2 for the first three examples. 
In the fourth example, the length of coding is 10 bits 
and the search range is from 0 to 8. 

We now report on four different shape functions we 
have computed. Note that the reconstructed result of 
the last generation in each example is not plotted since 
it cannot be distinguished froim the exact result by the 
naked eye. 
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Fig. 3 Reconstructed shupe function 
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Fig. 4 Error in reconstructed shape function 

In the first example, the shape function is chosen to 
be F(0) = (0.3 + 0.06cos€l + 0.03 sin0 + 0.025~0~20) 
metres, the reconstructed shape function is plotted in 
Fig. 3 with the error shown in1 Fig. 4. Here DR, which 
is called shape function discrepancies, is defined as 

r 

L _I 

where N' is set to be 60. The quantities DR provide 
measures of how well Fa'(€)) approximates F(0). From 
Figs. 3 and 4, is clear that the reconstruction of the 
shape function is fairly good. Note that the shape func- 
tion of the initial generation is far from the exact one. 
The typical CPU time for the example is about 30 min 
on a Sun Sparc 20. 
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For investigating the effect of noise, we add to each 
complex scattered field E,(r) a quantity b + e -  where b 
and c are independent random numbers having a 
Gaussian distribution with zero mean. The standard 
derivation of noise is normalised by the root-mean- 
square value of the scattered field. The noise standard 
derivations applied include lo", lo-', 2 x 
10-1 and 4 x lo-'. The numerical results are shown in 
Fig. 5. It shows that the effect of noise is tolerable for 
noise levels below lo-'. 
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Fig. 5 Numerical results for first example 
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In the second example, the shape function is chosen 
as F(0) = (1.2 + 0.48~0~28) metres. The purpose of this 
example is to show that our method is able to recon- 
struct the object of electrical dimension exceeding one 
wavelength. Satisfactory results are shown in Fig. 6 
with the error shown in Fig. 7. 

In the third example, the shape function is selected to 
be F(0) = (0.3 + 0 . 0 3 ~ 0 ~ 4 8  + 0.05sin48) metres. Note 
that the shape function is not symmetrical about either 
the x axis or the y axis. This example has further veri- 
fied the reliability of our algorithm. Refer to Figs. 8 
and 9 for details. 

In the fourth example, the same shape function is 
chosen as in example three. However, the length of 
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coding is set to be 10 bits and the search range for the 
unknown coefficient of the shape function is chosen 
from 0 to 8. The reconstructed results are shown in 
Fig. 10 with the error shown in Fig. 11. This example 
has demonstrated that, even if the search range for the 
unknown coefficient becomes large, good reconstruc- 
tion has been obtained 
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4 Conclusions 

We have presented a study of the application of the 
genetic algorithm to reconstruct the shape of a metallic 
object. Based on the boundary condition and the meas- 
ured scattered field, a set of nonlinear integral equa- 
tions is derived and reformulated into an optimum 
problem. The genetic algorithm is employed to find the 
global maximum of the objective function. Even if the 
initial guess is far away from the exact result, it con- 
verges to the global extreme, while the calculus-based 
method often becomes trapped in a local extreme. 

Good reconstruction is obtained from the scattered 
field both with and without addition Gaussian noise. 
Numerical results demonstrated that the reconstruction 
result is still good even when the initial guess is far 
away from the exact result. In addition, the genetic 
algorithm can tackle the inverse problem for the object 
of electrical dimensions exceeding one wavelength. On 
the contrary, the calculus-based methods fail for larger 
scatterers. From our experience, the main difficulties in 
applying the genetic algorithm to this problem are how 
to choose the parameters, such as the bit length of the 
string, population size, crossover probability and muta- 
tion probability. Different parameter sets will affect the 
speed of convergence and the computing time required. 
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